

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 26 (2006) 1205-1211

www.elsevier.com/locate/jeurceramsoc

Phase stability and mechanical properties of TZP with a low mixed Nd_2O_3/Y_2O_3 stabiliser content

Tao Xu^a, Jef Vleugels^{b, *}, Omer Van der Biest^b, Yanmei Kan^a, Peiling Wang^a

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,

Chinese Academy of Sciences, 200050 Shanghai, PR China

^b Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven, Belgium

Received 17 November 2004; received in revised form 18 January 2005; accepted 23 January 2005 Available online 26 February 2005

Abstract

The phase assembly of 1.0–5.0 mol% Nd₂O₃-doped ZrO₂ sintered at 1400 °C revealed that the tetragonal ZrO₂ phase could not be completely stabilised. Co-stabilising of 0.5–2.5 mol% Nd₂O₃ with 0.5–1.0 mol% Y_2O_3 , however, allowed the preparation of fully dense (Nd,Y)-TZP ceramics by pressureless sintering in air at 1450 °C. The mixed stabiliser monoclinic zirconia nanopowder starting material was synthesized from a suspension of neodymium nitrate, yttrium nitrate and monoclinic zirconia powder in an alcohol/water mixture. A HV₃₀ hardness of 10 GPa combined with an excellent indentation toughness of 13 MPa m^{1/2} could be achieved for the (1.0Nd,1.0Y)- and (1.5Nd,1.0Y)-TZP ceramics. The influence of the mixed stabiliser content on the phase stability and mechanical properties are investigated and discussed. © 2005 Elsevier Ltd. All rights reserved.

Keywords: ZrO2; (Nd,Y)-TZP; Sintering; Microstructure; Mechanical properties

1. Introduction

It is well known that partially stabilised zirconia (PSZ), and in particular tetragonal zirconia polycrystalline (TZP) ceramics are of technological importance as advanced structural ceramics because of their excellent mechanical properties such as fracture toughness and bending strength, which are associated with the stress-induced tetragonal (t) to monoclinic (m) ZrO₂ phase transformation. Stabilisers such as MgO, CaO, Y₂O₃ and CeO₂ can be used to retain as much tetragonal phase as possible at room temperature. As first reported by Garvie et al.¹ and investigated by Gupta et al.,² Y₂O₃ has become a very important stabiliser to ZrO₂ and is the most commonly used stabiliser.

During the past 20 years, phase stability and mechanical properties of Y_2O_3 -stabilised ZrO_2 have been extensively investigated. Transformation-toughened ceramics for structural applications fabricated in the binary Y_2O_3 - ZrO_2 system

generally contain 2–4 mol% Y_2O_3 . A Y_2O_3 content below 2 mol% has never been reported to be enough to stabilise the tetragonal phase at room temperature, as a consequence of the spontaneous t- to m-ZrO₂ transformation during cooling.^{3,4}

In recent years, it has been reported that new materials with optimised properties can be obtained by the addition of more than one stabiliser to ZrO_2 . As an example, Boutz et al.⁵ reported that the addition of CeO₂ to a Y-TZP could prevent low-temperature degradation (LTD), while retaining a relatively high fracture toughness of 7–9 MPa m^{1/2}. Although the influence of a secondary stabiliser to Y-TZP is complex and has not been completely understood, it is possible to fabricate new materials with excellent combination of mechanical properties by proper selection of a secondary stabiliser.

Information on the ternary $Nd_2O_3-Y_2O_3-ZrO_2$ system, however, is limited to the work of Hinatsu and Muromura⁶ The reported isothermal section at 1600 °C, based on 65 coprecipitated samples heated in air for 15 h, is presented in Fig. 1. A tetragonal ZrO_2 region is indicated in the ZrO_2 rich corner of this section, which is of interest in the present work. In general, however, the sintering temperature used to

^{*} Corresponding author. Tel.: +32 16 321244; fax: +32 16 321992. *E-mail address:* jozef.vleugels@mtm.kuleuven.ac.be (J. Vleugels).

^{0955-2219/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2005.01.040

Fig. 1. Isothermal section of the Nd_2O_3–Y_2O_3–ZrO_2 system at 1600 $^\circ C.^6$

fabricate ZrO₂ ceramics with good mechanical properties is not higher than 1500 °C, limiting the usefulness of the information from this diagram. Due to the lack of experimental information on the Y_2O_3 – Nd_2O_3 – ZrO_2 system, it is necessary to survey the phase relationship of the ZrO_2 -rich region of the binary Nd_2O_3 – ZrO_2 system. Yoshimura et al.,⁷ Andrievskaya and Lopato⁸ and Khor and Yang⁹ reported the phase equilibrium in the Nd_2O_3 – ZrO_2 binary system. Due to the contradictive character of the reported information, low content Nd_2O_3 -stabilised ZrO_2 nanopowders were synthesized and the phase assembly of pressureless sintered samples at 1400 °C were studied in the present work.

As reported by Khor and Yang,⁹ using dc plasma spraying technique, Nd₂O₃ can stabilise the tetragonal and/or cubic ZrO₂ phase dependent on the temperature and quantity added. Due to the similarity between the ionic radius of Ce⁴⁺ and that of Nd³⁺ and the better resistance to reduction compared to CeO₂, it seems therefore, interesting to investigate the possibility to fabricate Nd₂O₃–Y₂O₃ co-doped ZrO₂ ceramics. A HV₃₀ hardness of 10 GPa combined with a fracture toughness of 11.5 MPa m^{1/2} was recently reported for a (2.0Nd,1.5Y)-TZP sintered in air for 1 h at 1450 °C.¹⁰ This paper, however, is focussed on even lower stabiliser contents.

The properties of the starting powder play an important role on the final properties of the sintered zirconia materials. Most of the commercial Y_2O_3 -doped ZrO₂ powders are synthesized by co-precipitation. In recent years, however, other techniques were reported in which Y_2O_3 is introduced by means of a coating on the ZrO₂ particles.^{11,12} The bending strength and fracture toughness of Y-TZP ceramics based on Y_2O_3 -coated ZrO₂ starting powders are reported to be more attractive than those of ceramics based on co-precipitated powder, when sintered under the same conditions.¹¹ In the present work, a colloidal processing technique was used to prepare low-Nd₂O₃/low-Y₂O₃ co-coated m-ZrO₂ starting powders. Densification was performed by pressureless sintering in air at 1450 °C. In this paper, the phase assembly of Nd₂O₃-stabilised ZrO₂ was investigated at 1400 °C and the phase stability and mechanical properties of 0.5–1 mol% Y₂O₃ co-stabilised ZrO₂ as a function of a Nd₂O₃ content between 0.5 and 2.5 mol% is reported.

2. Experimental procedure

A colloidal suspension coating technique was applied to synthesize Nd_2O_3 - and $Nd_2O_3 + Y_2O_3$ -coated ZrO_2 nanopowders. Chemically pure Y(NO₃)₃·6H₂O (99.9%, Aldrich) and Nd(NO₃)₃·6H₂O (99.9%, Aldrich) were used to prepare water-based stock suspensions with an yttrium and neodymium concentration of 0.1 M. The appropriate amounts were mixed with pure m-ZrO₂ (Grade TZ-0, Tosoh, Japan) nanopowder (crystal size \approx 27 nm) in ethanol for 24 h. Y-TZP milling balls (Tosoh grade TZ-3Y, Japan) were added to the suspension to break the agglomerates during mixing. In order to avoid contamination, mixing was performed in polyethylene containers. After drying of the suspensions in a rotating evaporator, the powder was calcined in air at 800 °C for 1 h. Then, a second mixing in ethanol and rotating evaporation were performed to obtain soft agglomerated stabiliser-coated nanopowder. A similar coating technique was successfully applied to produce starting powders for Ce-TZP and Y-TZP ceramics.^{13–15}

As-synthesized powders were shaped into cylindrical compacts by cold isostatic pressing (CIP) at 300 MPa and subsequently densified in a tube furnace (TGA-171, Cahn, USA) under an air-flow of 100 ml/min, at 1450 °C for 1 or 2 h for Nd₂O₃/Y₂O₃ co-coated ZrO₂, and at 1400 °C for 1 or 24 h for Nd₂O₃-coated ZrO₂. Thermal cycling was performed with a heating rate of 20 °C/min from 20 to 1000 °C, 10 °C/min from 1000 °C to the sintering temperature and a cooling rate of 15 °C/min.

The Archimedes' principle was used to determine the density of the sintered samples in ethanol (BP210S balance, Sartorius AG, Germany). Phase identification was carried out by X-ray diffraction (XRD, 3003-TT, Seifert, Ahrensburg, Germany) on polished surfaces using Cu Ka (40 kV, 30 mA) radiation. The m- and t-ZrO2 volume fraction was evaluated from the diffraction patterns according to the method of Toyara et al.¹⁶ The microstructure of thermally etched cross-sectioned samples was investigated by scanning electron microscopy (SEM, XL-30FEG, FEI, Eindhoven, The Netherlands). For SEM observation, the surface of the samples was polished and thermally etched at 1300 °C for 30 min. The average grain size was calculated from the linear intercept length of more than 1000 grains, measured by image analysis of SEM micrographs. The reported values are the actually measured mean intercept lengths. The Vickers hardness (HV₃₀) was measured on a Zwick hardness tester (model 3202, Zwick, Ulm, Germany) with an indentation load of 30 kg on polished cross-sectioned samples. The fracture toughness, K_{IC} , was obtained from the radial crack pattern generated by these HV_{30} indentations, and calculated according to the formula of Anstis et al.¹⁷ using an elastic modulus of 200 GPa, a general value for 3Y-TZP ceramics.

3. Results and discussion

3.1. Nd₂O₃-stabilised ZrO₂

In order to investigate the tetragonal ZrO_2 phase stabilisation, 1–5 mol% Nd₂O₃ coated monoclinic ZrO_2 powder compacts were sintered at 1400 °C in air for 24 h. All sintered samples completely cracked, implying spontaneous tto m-ZrO₂ phase transformation during cooling to room temperature. The t-ZrO₂ phase content, as obtained from XRD analysis, is plotted as function of the Nd₂O₃ content in Fig. 2. The t-ZrO₂ content increases linearly with increasing Nd₂O₃ content indicating that t-ZrO₂ might be fully stabilised by using a proper higher amount of Nd₂O₃. However, no complete retention of the tetragonal phase was achieved in the investigated Nd₂O₃ stabiliser range.

Considering the relatively long holding time of 24 h, the large amount of monoclinic phase in the sintered Nd₂O₃-

Fig. 2. Tetragonal ZrO_2 phase content of the Nd_2O_3 -stabilised ZrO_2 ceramics as a function of the Nd_2O_3 content, sintered for 1 and 24 h at 1400 °C.

Fig. 3. Density of the (xNd,0.5Y)-ZrO₂ ceramics sintered for 1 h at 1450 $^{\circ}$ C as a function of the Nd₂O₃ content.

doped ZrO₂ samples might be attributed to grain growth of the tetragonal phase beyond the critical size for spontaneous transformation. To study this, powder compacts of 3, 4 and 5 mol% Nd₂O₃-coated ZrO₂ were sintered at 1400 °C in air for 1 h. The phase assembly of the 1 h sintered samples is also plotted in Fig. 1. The similar monoclinic phase content in the 1 h and 24 h sintered samples indicates that the addition of up to 5 mol% Nd₂O₃ does not completely stabilise the t-ZrO₂ phase when sintering for 1 h at 1400 °C.

3.2. $x \mod Nd_2O_3 = 0.5 \mod Y_2O_3$ -stabilised ZrO₂ with x = 0.5, 1.0 and 1.5

All investigated (xNd,0.5Y)-ZrO₂ (x=0.5, 1.0 and 1.5) ceramics showed severe micro- and macrocracks after sintering from the spontaneous t- to m-ZrO₂ transformation during cooling. Fig. 3 shows the bulk density of the samples sintered at 1450 °C as a function of the Nd₂O₃ content. The measured density of the samples sintered at 1450 °C for 1 h is significantly lower than the full density, estimated to be around 6.06 g/cm³ based on the obtained results for the 1.0 mol% Y₂O₃ co-stabilised grades, because of microcracking. At a longer sintering time of 2 h, microcracking is even more severe due to grain growth of the t-ZrO₂ phase.

These experimental results clearly indicate that 0.5 mol%Y₂O₃ in combination with 0.5-1.5 mol% Nd₂O₃ is not

Table 1

Ceramic	Holding time (h)	Density (g/cm ³)	HV ₃₀ (GPa)	$K_{\rm IC}~({\rm MPa}{ m m}^{1/2})$	Phase assembly ^a (vol.%)	Average grain size (nm)
(0.5Nd,1.0Y)-ZrO ₂	1	5.80 (cracked)	/	/	mono/s, t/m	395
	2	5.79 (cracked)	/	/	mono/s, t/m	433
(1.0Nd,1.0Y)-ZrO	1	6.06	9.99 ± 0.04	12.52 ± 1.32	95 t	284
	2	5.99 (cracked)	/	/	55 t	303
(1.5Nd,1.0Y)-ZrO	1	6.07	9.84 ± 0.24	13.06 ± 0.44	92 t	280
	2	5.88 (cracked)	/	/	23 t	308
(2.0Nd,1.0Y)-ZrO2	1	5.98	8.95 ± 0.36	9.72 ± 1.27	92 t	275
	2	5.98 (cracked)	8.91 ± 0.30	3.54 ± 0.78	31 t	310
(2.5Nd,1.0Y)-ZrO ₂	1	5.90 (cracked)	8.82 ± 0.51	6.56 ± 1.40	40 t	285
	2	5.85 (cracked)	8.60 ± 0.12	3.30 ± 0.43	37 t	322

^a t: tetragonal ZrO₂; mono: monoclinic ZrO₂; s: strong; m: medium.

Fig. 4. Scanning electron micrographs of the (xNd,1.0Y)-ZrO₂ materials, co-stabilised with 0.5 (a), 1.0 (b), 1.5 (c), 2.0 (d) and 2.5 (e) mol% Nd₂O₃, sintered at 1450 °C for 1 h.

enough to stabilise the t-ZrO₂ phase after sintering for 1-2 h at 1450 °C. Therefore, the Y₂O₃ stabiliser content was increased to 1 mol%.

3.3. x mol% Nd₂O₃-1.0 mol% Y₂O₃-stabilised ZrO₂ with x = 0.5, 1.0, 1.5, 2.0 and 2.5

The mechanical properties, phase composition and average grain size of the investigated (xNd,1.0Y)-ZrO₂ ceramics, sintered for 1 or 2 h at 1450 °C, are summarised in Table 1. Representative SEM micrographs of the thermally etched ceramic grades are presented in Figs. 4 and 5.

For the (0.5Nd,1.0Y)-ZrO₂ composition, fully dense materials could not be obtained regardless of the sintering time. XRD analysis revealed the presence of m-ZrO₂ as the major constituent phase. The average grain size of about 0.4 μ m is relatively large compared to the higher Nd₂O₃-stabilised grades, as reported in Table 1.

Fig. 5. Scanning electron micrographs of the (xNd,1.0Y)-ZrO₂ materials, co-stabilised with 0.5 (a), 1.0 (b), 1.5 (c), 2.0 (d) and 2.5 (e) mol% Nd₂O₃, sintered at 1450 °C for 2 h.

Fully dense (1.0Nd,1.0Y)-ZrO₂ and (1.5Nd,1.0Y)-ZrO₂ ceramics, however, were obtained after sintering for 1 h at 1450 °C. The main crystalline phase is t-ZrO₂, although a small amount of m-ZrO₂ (<8 vol.%) was found that might be caused by polishing (see Table 1). The average grain size of 0.28 μ m is substantially lower than for the 0.5 mol% Nd₂O₃-stabilised grade, and comparable for the 1.0 and 1.5 mol% Nd₂O₃ grades. After 2 h sintering, the density of the samples decreased and microcracks appeared. XRD analysis revealed a large amount of monoclinic ZrO₂ phase in

these samples. The reduced density should, therefore, be correlated to the formation of microcracks caused by the spontaneous transformation. Although the average grain size only slightly increases to 0.30 μ m, spontaneous transformation occurred indicating that the critical t-ZrO₂ grain size for spontaneous transformation of (1.0Nd,1.0Y)-ZrO₂ and (1.5Nd,1.0Y)-ZrO₂ ceramics is about 0.3 μ m.

The density of the (2.0Nd, 1.0Y)-ZrO₂ and (2.5Nd, 1.0Y)-ZrO₂ samples, sintered for 1 h at 1450 °C are lower than that of the (1.0-1.5Nd, 1.0Y)-ZrO₂ ceramics (see Table 1).

Fig. 6. Vickers hardness of the (xNd,1.0Y)-ZrO₂ samples sintered at $1450 \,^{\circ}$ C as a function of the Nd₂O₃ content.

No visual cracks were observed for the (2.0Nd,1.0Y)-ZrO₂, whereas macrocracks were present in the (2.5Nd,1.0Y)-ZrO₂ ceramic.

The dependence of the Vickers hardness and indentation toughness of the 1.0 mol% Y_2O_3 co-stabilised ceramic grades as a function of the Nd₂O₃ content is graphically presented in Figs. 6 and 7, respectively. The HV₃₀ hardness decreases slightly from 10 to 9 GPa with increasing Nd₂O₃ content, due to the t- to m-ZrO₂ transformation at higher Nd₂O₃ levels.

The fracture toughness of the (1.0-2.5Nd,1.0Y)-ZrO₂ ceramics is strongly related to the Nd₂O₃ content and the sintering time at 1450 °C, as shown in Fig. 7. The toughness of the 0.5 mol% Nd₂O₃ co-stabilised grade is low due to the presence of microcracks but increases with increasing Nd_2O_3 content up to a maximum of 13.04 MPa m^{1/2} for a Nd₂O₃ content of 1.0 and 1.5 mol%. Beyond the maximum, the toughness decreases with increasing Nd₂O₃ content. It is well known that the excellent fracture toughness of zirconia ceramics is due to the stress-induced martensitic transformation, which is strongly related to the type and content of the stabiliser and the t-ZrO₂ grain size.^{3,18} The retention of the t-ZrO₂ phase after sintering is only possible if the grain size of the dense crystalline materials is smaller than the critical size for spontaneous transformation, which depends on the stabiliser content and the amount of mechanical constraint.¹⁹ As reported above, the (0.5Nd,1.0Y)-ZrO₂ ma-

Fig. 7. Fracture toughness and average grain size of the (xNd,1.0Y)-ZrO₂ samples sintered at 1450 $^{\circ}$ C as a function of the Nd₂O₃ content.

Fable	2
-------	---

Volume percent of m- and t-ZrO₂ phase on polished and fractured surfaces of the (1.0Nd, 1.0Y)-ZrO₂ ceramic, sintered in air at 1450 °C for 1 h

Polished surface		Fractured su	rface	t-ZrO ₂
V _m (vol.%)	$V_{\rm t}$ (vol.%)	$V_{\rm m}$ (vol.%)	$V_{\rm t}$ (vol.%)	transformability (%)
5	95	84	16	83

terial spontaneously transformed and the average grain size should be above the corresponding critical size. The average grain size of the (1.0–2.5Nd,1.0Y)-ZrO₂ ceramics is comparable (0.28 μ m) and substantially lower than for the 0.5 mol% Nd₂O₃ co-stabilised grade, as shown in Fig. 7. The m-ZrO₂ content of the (1.0–2.5Nd,1.0Y)-ZrO₂ materials, however, increases with increasing Nd₂O₃ addition (see Table 1), indicating that the critical grain size decreases with increasing Nd₂O₃ content. The critical grain size of about 0.3 μ m is exceeded in all investigated (*x*Nd,1.0Y)-ZrO₂ ceramics after sintering for 2 h at 1450 °C, explaining the degraded samples as well as the reduced toughness of these material grades.

In order to investigate the transformability of the TZP material grades, the (1.0Nd,1.0Y)-ZrO₂ sample sintered for 1 h at 1450 °C was broken in a 3-point bending set-up and the phase composition was measured by X-ray diffraction. The volume percent of monoclinic and tetragonal phase measured on polished and fracture surfaces are summarised in Table 2. The tetragonal ZrO₂ phase transformability upon fracturing, i.e., the amount of tetragonal ZrO₂ that transforms during fracturing, is more than 80%, clearly illustrating the transformation toughening mechanism in this ceramic.

This work illustrated that the transformability of the t-ZrO₂ phase of a 1.0 mol% Y_2O_3 stabilised ZrO₂ can be reduced by the addition of a proper amount of Nd₂O₃ to such a level where spontaneous transformation is avoided. Moreover, by a proper selection of the mixed Y_2O_3/Nd_2O_3 stabiliser content, fully dense (Nd,Y)-TZP ceramics with excellent fracture toughness can be obtained. A maximum toughness of 13.04 MPa m^{1/2} can be achieved when sintering a (1.5Nd,1.0Y)-ZrO₂ composition in air for 1 h at 1450 °C, which is well above the toughness that can be achieved for 2Y- and 3Y-TZP and comparable to the values obtained for optimised 12Ce-TZP ceramics.

4. Conclusions

Although the tetragonal ZrO_2 phase content increased linearly with increasing Nd_2O_3 content in the binary Nd_2O_3 – ZrO_2 system, it was not possible to completely stabilise the t- ZrO_2 phase with up to 5 mol% Nd_2O_3 after sintering for 1 or 24 h at 1400 °C. The addition of 0.5–1.5 mol% Nd_2O_3 to a 0.5 mol% Y_2O_3 stabilised ZrO_2 or 0.5 mol% Nd_2O_3 to a 1.0 mol% Y_2O_3 stabilised ZrO_2 resulted in mainly m- ZrO_2 material after sintering for 1 h at 1450 °C.

Co-stabilising of 1.0 mol% Y_2O_3 with 1.0-2.5 mol% Nd_2O_3 allowed to obtain (Nd,Y)-TZP ceramics. A maximum

indentation toughness of 13 MPa m^{1/2}, in combination with a HV₃₀ hardness of 10 GPa, was obtained for the (1.0Nd, 1.0Y)-ZrO₂ and (1.5Nd, 1.0Y)-ZrO₂ ceramics sintered in air for 1 h at 1450 °C. The average ZrO₂ grain size of the ceramics sintered for 1 h was found to be comparable and around 0.28 μ m at a Nd₂O₃ content of 1.0–2.5 mol%. The critical grain size for spontaneous transformation, however, decreases with increasing Nd₂O₃ content, resulting in a reduced fracture toughness and t-ZrO₂ content with increasing Nd₂O₃ addition. At lower Nd₂O₃ content, the average grain size was measured to be significantly larger resulting in spontaneous transformation.

Acknowledgement

This work is financially supported by the Research Fund K.U. Leuven within the framework of the Flanders–China bilateral projects BIL 02/06, BIL 04/13 and BIL 04/14.

References

- Garvie, R. C., Hannink, R. H. J. and Pascoe, R. T., Ceramic steel? *Nature*, 1975, **258**, 703–704.
- Gupta, T. K., Bechtold, J. H., Kuznicki, R. C., Cadoff, L. H. and Rossing, B. R., Stabilization of tetragonal phase in polycrystalline zirconia. J. Mater. Sci., 1977, 12, 2421–2426.
- Wang, J., Rainforth, M. and Stevens, R., The grain size dependence of the mechanical properties in TZP ceramics. *Br. Ceram. Trans. J.*, 1989, 88, 1–6.
- Li, J., Tang, Z., Zhang, Z. and Luo, S., Study of factors influencing the microstructure and phase content of ultrafine Y-TZP. *Mater. Sci. Eng. B*, 2003, **99**, 321–324.
- Boutz, M. M. R., Winnubst, A. J. A., Van Langerak, B., Olde Scholtenhuis, R. J. M., Kreuwel, K. and Burggraaf, A. J., The effect of ceria co-doping on chemical stability and fracture toughness of Y-TZP. J. Mater. Sci., 1995, 30, 1854–1862.

- 6. Hinatsu, Y. and Muromura, T., Phase relations in the systems $ZrO_2-Y_2O_3-Nd_2O_3$ and $ZrO_2-Y_2O_3-CeO_2$. *Mater. Res. Bull.*, 1986, **21**, 1343–1349.
- Yoshimura, M., Tashima, M., Noma, T. and Somiya, S., Formation of diffusionlessly transformed tetragonal phases by rapid quenching of melts in the ZrO₂–RO_{1.5} system (R = rare earths). *J. Mater. Sci.*, 1990, **25**, 2011–2016.
- Andrievskaya, E. R. and Lopato, L. M., Influence of the composition on the t→m transformation in the systems ZrO₂-Ln₂O₃ (Ln=La, Nd, Sm, Eu). J. Mater. Sci., 1995, **30**, 2591–2596.
- Khor, K. A. and Yang, J., Rapidly solidified neodymia-stabilised zirconia coating prepared by DC plasma spraying. *Surf. Coat. Tech.*, 1997, 96, 313–322.
- Xu, T., Vleugels, J., Van der Biest, O. and Wang, P., Mechanical properties of Nd₂O₃/Y₂O₃-coated zirconia ceramics. *Mater. Sci. Eng. A*, 2004, **374**, 239–243.
- Burger, W., Richter, H. G., Piconi, C., Vateroni, R., Cittadini, A. and Boccalari, M., New Y-TZP powders for medical grade zirconia. *J. Mater. Sci.: Mater. Med.*, 1997, 8, 113–118.
- Singh, R., Gill, C., Lawson, S. and Dransfield, G. P., Sintering, microstructure and mechanical properties of commercial Y-TZPs. J. Mater. Sci., 1996, 31, 6055–6062.
- Vleugels, J., Yuan, Z. X. and Van der Biest, O., Mechanical properties of Y₂O₃/Al₂O₃-coated Y-TZP ceramics. *J. Eur. Ceram. Soc.*, 2002, 22, 873–881.
- Yuan, Z. X., Vleugels, J. and Van der Biest, O., Synthesis and characterisation of CeO₂-coated ZrO₂ powder-based TZP. *Mater. Lett.*, 2000, 46, 249–254.
- Yuan, Z. X., Vleugels, J. and Van der Biest, O., Preparation of Y₂O₃coated ZrO₂ powder by suspension drying. *J. Mater. Sci. Lett.*, 2000, 19, 359–361.
- Toyara, H., Yoshimura, M. and Shigeyuki, S., Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO₂ system by X-ray diffraction. J. Am. Ceram. Soc., 1984, 67, C-119–C-121.
- Anstis, G. R., Chantikul, P., Lawn, B. R. and Marshall, D. B. A., A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. *J. Am. Ceram. Soc.*, 1981, 64, 533–538.
- Lange, F. F., Transformation-toughened ZrO₂: correlations between grain size control and composition in the system ZrO₂-Y₂O₃. *J. Am. Ceram. Soc.*, 1986, **69**, 240–242.
- Rühle, M. and Evans, A. G., High toughness ceramics and ceramic composites. *Prog. Mater. Sci.*, 1989, 33, 85–167.